
Regan, Patrick M. and Brian M. Slator (2002). Case-based Tutoring in Virtual Education Environments. ACM Collaborative Virtual Environments 2002

 1

Case-based Tutoring in Virtual Education Environments

Patrick M Regan and Brian M Slator
Computer Science Department
North Dakota State University

Fargo, ND 58105

Abstract
Virtual education environments are gaining popularity as tools to

enhance student learning. These environments are often used to
allow students to experience situations that would be difficult, costly,
or impossible in the physical world. North Dakota State University
provides students with environments to enhance their understanding
of geology (Planet Oit), cellular biology (Virtual Cell), retailing
(DollarBay), and history (Blackwood). In order to maximize the
learning potential of each individual student, an ideal environment
needs to provide customized lessons to that student based on his or
her individual performance. One method to address this requirement
is the use of case-based reasoning software. This software is used to
monitor student performance, track progress throughout an
environment, compare the student to other students in the same
environment, and create customized tutor dialogs to communicate
this information to the student in the form of individual tutor lessons.
An example of case-based lesson building software that meets the
above requirements can be observed in the current DollarBay
retailing environment.

Key Words: Case-based Tutoring, Computers in Education,
Intelligent Systems, Multimedia Applications

Introduction
The traditional teaching environment is usually thought to be that

of a classroom: a single teacher giving lectures to a group of students
who are expected to use their notes and textbook to prepare for
periodic examinations and demonstrate that they have learned.
Technology provides an alternative to this scenario. One of the ways
technology can be used to supplement learning is through the
construction of virtual education environments to simulate scenarios
that may be difficult for students to experience in the physical world.
Using the Internet, students can access these worlds remotely, be it in
a classroom or in the solitude of their own dwelling. At North
Dakota State University (NDSU), the World Wide Web Instructional
Committee (WWWIC) is engaged in research aimed at developing
virtual education environments to assist in the education and growth
of students. Some of the key factors that lead to success of these
environments at NDSU are the use of graduate and undergraduate
students in the development process, the use of the environments in
actual classes, and the application of knowledge from one
environment to the others. One of the major goals of WWWIC
research is to find ways to provide tutoring agents to communicate
“expert stories” to students as they progress through the environment.
These agents should monitor the student and send advice on an “as
needed” basis while being careful to never insist upon or block any
course of action [Slator et al. 99].

Although several of the virtual education environments at NDSU

provide some basic tutoring functionality to students, none had
implemented a completely functional case-based system except
DollarBay. This system provides complete analysis of student
behavior based on selected attributes and a message delivery
mechanism. This paper describes the design and functionality of the
case-based tutoring system implemented in DollarBay. This system

provides the means to generate personalized lessons for each student
participating in the DollarBay environment. In addition, it provides a
framework that may be used to implement similar functionality in the
other virtual education environments at NDSU with a minimum of
coding.

The DollarBay simulation is based upon a client/server paradigm.

The server side of DollarBay consists of a server program and a
database. It is permanently connected to the Internet and allows other
users to connect at any time, from any location, to the DollarBay
environment. The database for DollarBay is implemented in
LambdaMOO [Curtis 97]. The database contains representations of
all of the objects in the DollarBay environment, including the MOO
programs necessary to give the objects their specific behavior. On the
client side, the student interacts in the DollarBay environment by
using a graphical user interface (GUI). The GUI window is
generated by a Java applet and serves as the connection to the
LambdaMOO server. This allows the student to interact with the
environment by pointing, clicking, and selecting objects as well as
typing text.

Playing the DollarBay Game

As players engage themselves in the DollarBay game, they are
assigned a location and must decide what to sell, what level of
service to offer, how much to spend on advertising, how much to
stock, who to buy from, and what price to set to appear attractive to
the customer agents [Slator & Farooque 98]. In order to simulate an
economic environment, time is divided into "virtual weeks". Each
week the customer agents are given a shopping list representing a
weeks worth of demand for various products. After each week has
concluded and the shopping lists are exhausted, each agent assigns
new attractiveness ratings to each store based upon the past week's
experience and new shopping lists are created for the upcoming week
[Slator & Farooque 98].

At the end of each virtual week the weekly calculation charges
players for their weekly expenses, recalculates the customer agent
motivations as described above, and updates each of the player cases.
At the end of a player’s life, they are retired to the Hall of Fame. The
Hall of Fame is a place where players are moved when they graduate
from the game by reaching a profit goal or are inactive for a long
period of time. Players are moved to the Hall of Fame by the reaper,
who is sent out periodically to retire graduated and inactive players.
The reaper is responsible for recycling all of the objects related to the
player, such as store, company, ads, and products. Recycling makes
object numbers available for reuse at a future date as new objects are
created. The reaper also moves the player’s active case to historical
cases for future reference by case-based tutors.

Overview of LambdaMOO

MOO is an abbreviation for a Multi User Dungeon Object
Oriented or Multiuse Object Oriented system. It is designed to be a
network accessible, programmable, interactive, multi-user system
that is well suited to the construction of text-based collaborative
software most commonly used as multi-participant low bandwidth
virtual reality [Curtis 97]. It contains a small, simple language that is
designed to be easy to learn and supports expressions, looping,
control structures, and built-in functions. LambdaMOO models
virtual reality by representing virtual world entities (tutors, cases,
stores, players, etc) as objects. It supports other value types as well
(integers, strings, etc) but the objects are the backbone of any
LambdaMOO database [Zelenak 99]. A property is used to store an

Regan, Patrick M. and Brian M. Slator (2002). Case-based Tutoring in Virtual Education Environments. ACM Collaborative Virtual Environments 2002

 2

arbitrary MOO value. Verbs are LambdaMOO programs associated
with a particular object.

In addition to the functionality described above, LambdaMOO
also includes a built in command parser. Any time the command
parser is invoked, the first word is always taken to be a verb. After
identifying the form of the command, the parser may then proceed to
execute it using one of the built-in commands, or by looking up the
MOO objects representing the direct and indirect objects and then
executing the command [Curtis 97]. LambdaMOO is also an object-
oriented language.

Case-based Reasoning

“Case-based reasoning means reasoning based on previous cases
or experiences” [Kolodner &Leake 96]. The purpose of this
approach is to form a judgment about a situation based on cases that
are already classified. In order to perform case-based tutoring, one
must understand the definition of a case. A case is an example of a
past problem and its solution. In DollarBay, cases are sets of both
abstract and concrete attributes that represent the status of a player’s
business strategy. Case-based tutoring is intended to enhance the
effectiveness of student learning via educational simulation
environments.

The design of an educational simulation environment is based
upon several core principles, the first being that the environment is
role based. This allows the student to fully assume the role of a
character trying to accomplish some predetermined goal. The second
principle is that the environment itself must be immersive. As the
student assumes a particular role in the environment, he or she
becomes immersed in it and starts to think and make decisions like
that character would. The simulation must also be highly
interactive]. Environments must have a goal or objective to
accomplish. Finally, it must be game like [Slator 99].

Virtual Educational Environments at NDSU

There are several environments currently implemented at NDSU.
The Virtual Cell [White et al. 99] is a 3-D rendering of an interactive
biological cell. Students are given assignments by a virtual lab
instructor, and sent out to explore cells in tiny submarines. Planet Oit
[Schwert et al. 99], is a part of the Geology Exploration Project and is
used by geology students at NDSU. Students, playing the role of
geologists on a field exploration of the mythical Planet Oit, are asked
to acquire a set of field instruments. Blackwood [Slator et al. 01], is
a simulation of a 19th century western town populated with intelligent
agents who simulate the economic environment representative of the
time. Players accept a role in the environment and are forced to
compete with other players and agents holding the same role [Slator
99]. The DollarBay world allows students to simulate owning and
operating their own retail store in the city of DollarBay. Students
who quickly figure out how to best serve the needs of the shoppers
rapidly rise to be profitable.

The overall goal of intelligent tutoring is to focus on developing

and employing intelligent agents within multi-user distributed
simulations to help provide effective learning experiences [Slator 99].
Examples of diagnostic tutoring may be seen in Planet Oit. For
example, the science tutor looks at the decision making process that a
player follows while trying to properly identify a material, and what
experiments were performed on the material, the tutor is able to
identify students who have made “lucky guesses” and let them know
that they did not follow the proper process in getting to their answer.

Rule-based tutoring at NDSU was at one time functional in
DollarBay. A rule-based tutor functions by knowing a set of rules
about a domain, monitoring student action for any indication of
breaking one of the rules, and then visiting the student to present a
warning [Slator, Brian M. 99]. For example, one of the rules that the
now defunct rule-based tutor in DollarBay monitored was if a student
had set their prices to an excessive markup. In such an instance, the
tutor would send a message to the student informing them that they
may be setting their prices too high [Slator, Brian M. 99].

An example of case-based tutoring outside the NDSU realm is

the Georgia Tech Case-Based Intelligent Tutoring System (GT-
CBITS). This system is used to demonstrate the importance of
critical information to airplane pilots by using stories of difficult
situations or incidents encountered by other pilots. The topics
presented can range from problems arising from the complex nature
of aircraft, the dynamic nature of the aviation environment, or
new/changing features of an aircraft [Palmer 02]. Case-based
tutoring at NDSU has presently only been implemented in the
DollarBay virtual world.

Case-based Tutoring in DollarBay

The DollarBay case builder is centered on a set of verbs that are
all defined on an object named $g.gencase. These verbs control the
creation, initialization, comparison, and updating of all cases. The
children of the $g.gencase object are the cases themselves. Case
updates are carried out periodically during the “weekend
calculations” in the game as well as prior to any tutor message
generation. In addition to the $g.gencase object, a $g.tutor_agent
object exists for the purpose of generating tutor messages. This
object owns the verbs that handle the construction of tutor messages
and the scheduling of tutor visits. Tutor visits are scheduled during
the execution of a player’s $g.retail_player:confunc verb, which runs
each time the player connects to the game.

Architecture of Case-based Lesson Building System

The backbone of any case based tutor system is an effective case
matching procedure coupled with a substantial case library. The
fundamental building block of any case-based system is a case. All
cases in DollarBay divided into four distinct groups:

1. Active Cases ($g.active_cases) – the current cases for each
active player’s store

2. Historical Cases ($g.historical_cases) – a copy of the final
case for each store when the player is reaped and moved to
the Hall of Fame.

3. Case Library ($g.case_library) – a copy of each unique case
that has occurred in the history of DollarBay. Each of these
cases represents a unique combination of the eight abstract
properties of a case

4. Prototypical Cases ($g.protocase) – the five prototypical cases
that are used by the tutor to determine abstract case matches.
The descriptions of these prototypes currently are:

a. Overcautious – player has plenty of money and is not using it
to stock rapidly or expand product lines

b. Overspender – player is too liberal with money (expensive
employee, expensive ads, loans) and has no clear price
advantage or plan

c. Best Player – player who is profitable and not doing anything
obviously wrong

d. Barking up the Wrong Tree – player products and services do
not match ads and the prices are not appealing to target group

Regan, Patrick M. and Brian M. Slator (2002). Case-based Tutoring in Virtual Education Environments. ACM Collaborative Virtual Environments 2002

 3

e. Foolish Squanderer – player is bleeding money and has no
clue about how to run a business

In DollarBay, each case shares a set of similar abstract attributes
that define it. A list of the similarity measures, their
acceptable values, and a brief description of how each is
calculated follow:

1. product_focus {"not evaluated", "tight", "moderate", "wide"}
– looks at a list of the current product families and number of
products stocked for each store. Computes a “focus factor”
based on ratio of number of types to total quantity stocked

2. restock_plan {"not evaluated", "understocking", "acceptable",
"overstocking"} – estimates annual sales based on accounting
records and annual revenue from the price of items currently
on order. Creates a ratio of projected revenue to projected
sales

3. ad_cost {"not evaluated", "low", "affordable", "high"} – uses
the liquid assets and advertising costs of a company to
compute the average advertising cost per day. Determines the
percent of available cash used to purchase advertising

4. ad_target {"not evaluated", "fuzzy", "okay", "focused"} – gets
a set of cluster groups based on what ads are running, looks at
the sales records, and determines the effectiveness of each ad
based on the attractiveness of the ad to each cluster group
from the sales

5. staff_level {"not evaluated", "underskilled", "appropriate",
"overskilled"} – generates a ratio of current staff cost to total
sales

6. cash_reserves {"not evaluated", "low", "moderate", "high"} –
gets the current cash on hand, the total of all expenses
incurred, and calculates the average daily expenses

7. price_margin {"not evaluated", "low", "moderate", "high"} –
obtains the current cost and price for each product, computes
the markup for each

8. liability {"not evaluated", "good", "risky", "very risky"} –
gets the daily loan payments and generates a ratio of
payments to income

In addition to the abstract similarity attributes of a case listed
above, each case contains additional attributes that are used to assist
in case-based lesson building. An explanation for each follows:

1. active_similarity – contains a ranked list of active player
cases sorted by the sum of their abstract similarity values.
This attribute is used to determine the most similar active case
to the current case

2. prototype_similarity – contains a ranked list of prototypical
cases sorted by the sum of their abstract similarity values.
This attribute is used to determine the most similar
prototypical case to a given case

3. product_list – contains a list of products that are currently in
stock for an active player store

4. prototype_family – contains a pair of elements stored in a list.
The first element is the object number of the prototypical case
that a case matches the most. The second element is a
descriptor of how closely the case matches the prototypical
case contained in the first element

5. active_tutor_dialog – used during similarity calculations to
store a list of information that is later used to generate a tutor
message

6. last_tutor_visit – displays a list containing the turn and
timestamp of the last tutor visit a player received

7. library_match_history – a list of lists. Each sub list contains a
game turn and library case object number for the first time the
current case matched the given library case. This attribute is

used to track which library cases an active case has matched
over time

8. prototype_tutor_dialog - used during similarity calculations to
store a list of information that is later used to generate a tutor
message

Prior Work

At the outset of the implementation of this project, a portion of
the work had already been completed. The current case-based
message builder for DollarBay is based upon the original work.

Weekly Case Update

At the end of each virtual week in DollarBay, a set of weekly
calculations is run. As a part of this process the weekly case update
is performed, which brings the active cases for all of the valid player
stores up to date by calculating the current values of the eight
similarity measures described above. If an active case for each player
store cannot be retrieved, a new case is created for that store. The
case library is also updated with each active case.

Update Case Library

During a case library update the player’s case is first compared to
every case in the library. During the comparison, the eight abstract
similarity values of the player case are compared to the respective
values of each library case. If an exact match is identified, the
player’s case is added to the match_history property of the library
case. The property contains a list of the first time any player case has
matched a specific library case. If the player’s case has already been
matched to the current library case at some point in the past, no new
entry is made to the match_history of the case. If the player’s case
has never been recorded in the match_history of the matching library
case, a new entry is generated using the generate_history_entry
algorithm. The entry generated by this algorithm contains the current
turn, the store owner object number, the store owner name, and the
product families that are currently stocked in the store.

If, after comparing the player’s case to the entire case library, no
exact abstract similarity value match is found, a new library case is
created. The eight abstract similarity properties for the new library
case are then set to the same values as the player case and the first
entry, which contains the player’s information, is made to the
match_history list for the new library case.

The final step in updating the case library is to update the library
match history for the player case. This property contains a list that
keeps track of every library case the player case has ever matched. It
is updated by first looking to see if the current entry will be the first.
If so, a new entry, which consists of the turn number and the object
number of the matching library case, is created. If the entry will not
be the first, the last entry in the list is examined to see if its library
case is the same as the library case that currently matches the player
case. If the last entry does contain the same library case as the
current match, no new entry is created. If the last match is not the
same as the current library case match, a new entry is generated and
added to the end of the list.

Determining Case Similarity

In order to construct a meaningful tutor message, cases must be
compared. This comparison is completed in the hopes of determining
similar cases from which information is drawn to construct a
message. To accomplish this, the tutor messages depend upon
comparisons of the player case to the prototypical cases and the other
active cases. The compute_similarity_value verb is a general-
purpose comparison engine used to determine the similarity of two

Regan, Patrick M. and Brian M. Slator (2002). Case-based Tutoring in Virtual Education Environments. ACM Collaborative Virtual Environments 2002

 4

cases based upon their eight abstract similarity properties. The
similarity is constructed by comparing each of the abstract properties
for the two cases. A direct match results in 10 points, thus creating in
a maximum possible similarity value of 80 for two identical cases.

The algorithm begins by looking at each abstract attribute on the
two cases. If either case is “not evaluated” for the attribute currently
being examined, the attribute is skipped and the next attribute
examined. As the comparison is carried out, lists containing matched
attributes and unmatched attributes are constructed as is the total
similarity point value. The algorithm is able to handle comparison of
prototypical cases with multiple values for an attribute by keeping
track of the closest comparison between the other case’s value and
the multiple attribute values of the prototypical case in such an
instance. The verb then checks to see if the comparison involves
prototypical cases. If it does, the prototype_tutor_dialog of the active
case being compared is set to a list containing the prototypical case
object number, a list of the matched attributes, and a list of the
unmatched attributes. This data is important for future tutor dialog
construction. The verb completes by returning the similarity value
that is the result of the comparison.

Prototypical Case Similarity

An active case’s prototypical similarity is stored as a list in its
prototype_similarity property. In addition, each active case contains
a prototype_family property that describes how strongly it matches
the prototypical case that it is most similar to. In order to set the
values of these properties, the eval_prototype_similarity_and_sort
verb is called on an active case.

The first step in determining an active case’s prototypical
similarity is to clear the tutor_dialog property of the case. This
property is used to store information generated during the similarity
check for later use in constructing a tutor message. The active case is
then compared to each prototypical case by calling the
compute_similarity_value verb (explained in the previous section).

As the active case is compared to each of the prototypical cases,
the result of each comparison is stored in a similarity list as a list
containing the object number of the prototypical case and the
similarity value. Upon completion of the comparisons, this list is
sorted by the similarity values from highest to lowest, and the
resulting list is saved as the prototype_similarity property of the
active case. The final step in determining prototypical similarity is to
set the prototype_family of the active case.

The algorithm that determines the prototype_family of the active
case begins by generating a list of the highest ranked prototypical
cases. This list is called the family list and is generated in case there
is more than one prototypical case with the highest similarity in the
active case’s prototype_similarity list. In the event that there is a
single entry in the family list, the prototype_family of the active case
is set to the prototypical case of that entry. If there is more than one
prototypical case in the family list, the algorithm compares the entries
to determine which should be set as the prototype_family for the
active case.

The final step in setting the prototype_family of an active case
occurs by determining the strength of the match between the active
case and the prototypical case. If the similarity value for the matched
prototype family is high (in the top 25% of the similarity value
range), the match is classified as “strong”. If the similarity value is
between 50% and 75% of the maximum value, the match is classified
as “weak”. Any prototype_family based upon a similarity value of
less than 50% of the maximum, of which there should be very few, is
classified as “very weak”. After the strength of the match is

determined, it is stored in the active case’s prototype_family property
along with the object number of the most similar prototypical case.

Active Case Similarity

An active case’s similarity to the other active cases is stored as a
list in its active_similarity property. The value of this property is set
by the eval_active_similarity_and_sort verb.

The first thing the eval_active_similarity_and_sort algorithm
does is compares the player’s active case against every other active
case by calling the compute_similarity_value verb. The results of
each similarity computation are stored as a list of ordered pairs
containing the object number of the compared active case and the
similarity value. Upon completion of the comparisons, this list is
sorted by the similarity values from highest to lowest, and the result
is saved as the active_similarity property of the active case. Each
entry in the list contains the object number of the active case that was
compared, the similarity of the case to the player’s case, and two
zeros that are used as placeholders for the concrete similarity results.

Concrete Active Case Similarity

In addition to the active similarity value based on the eight
abstract similarity properties it is useful to understand how a player
compares to other players in terms that are more concrete. The intent
of the eval_concrete_active_similarity verb is to examine active
players of the highest abstract correlation in these concrete terms and
provide additional comparison criteria to further refine the measure
of similarity between them.

The algorithm begins by first determining the similarity value of
the highest ranked active case in the player’s active_similarity list
(the first case in the list, since it has been sorted). It then proceeds to
compute a concrete similarity value for every entry in the player’s
active_similarity list that has a similarity value equal to the first
entry. The concrete similarity value is returned from a call to the
compute_concrete_similarity_value verb. It should be noted that
with ten or more players in the game there are often multiple active
cases with the same active similarity in a player’s active_similarity
list, and thus the need for this concrete comparison.

The compute_concrete_similarity_value verb determines a
concrete similarity value by comparing several concrete attributes of
the player’s case to the active case being compared. It keeps a
running total of similarity points based on the results of each concrete
comparison and returns it upon completion. The concrete similarity
measures are:

1. number_of_product_families _stocked - examines the product
list of each case and generates a count of product families for
each by examining the ancestors of each product in the
product lists.

2. product_families - examines the product list of each case and
generates a list of product families for each

3. number_of_products_stocked - computes the length of the
product list for each case

4. average_markup - looks at all of the owned_objects of a
store’s owner, determines if each is a shipment, calculates the
percent markup of the shipment, adds the markup to a running
total, and increments a counter. When the verb is finished
looking at all of the owned_objects, it then divides the total
markup by the counter to get the average markup percentage
for products stocked

5. cash - looks at the cash property of the company for each case
6. player_age - looks at the first_connect_time property for the

owner of each player case

Regan, Patrick M. and Brian M. Slator (2002). Case-based Tutoring in Virtual Education Environments. ACM Collaborative Virtual Environments 2002

 5

7. items_sold_last_week - if an employee is found for both
cases, the comparison begins by examining the lw_sold
property on each employee. A total of items sold is then
computed for each case using this property

8. sales_lost_for_not_stocked - if both cases have valid
employees, it examines the lw_not_stocked property of each.
A running total of lost sales for each employee is then
computed

9. employee_type – looks at the parent of the employee for each
case to determine the employee type

10. ad_type – looks at the types of ads run by the owner of each
case

11. net – looks at the net_worth property of each case’s company

There is a verb to handle each of the concrete comparisons and

each returns a similarity score for that comparison based upon the
strength of the match. The score returned by each verb is currently
three points for a strong match, one point for a weak match, and no
points for an insignificant match. Anytime a strong match is
identified, a string describing the situation is appended to the
active_tutor_dialog property of the player’s case for later use in tutor
message generation.

After the compute_concrete_similarity_value verb returns a
concrete similarity value, the eval_concrete_similarity verb finishes
by updating the active_similarity property of the case with new data.
It was previously explained that the eval_active_similarity_and_sort
verb placed two zeros as placeholders in each entry of a player’s
active_similarity property of their case. The first of these
placeholders is now filled with the concrete similarity score for the
case, and the second with the sum of the active similarity and the new
concrete active similarity scores.

Tutoring
This tutoring process is currently triggered whenever a player

logs in to DollarBay. During execution of the confunc (a function
called at connect time), several criteria are checked to see if the
player should receive a tutor. The player must meet all of the criteria
to receive a tutor visit. The criteria are:

• Is the player a valid player?
• Is the tutor_enable property of the player set?
• Is it true that the player has received no tutor visits yet this

week?
• Has the player been playing for more than twelve hours?

If all of the criteria are met, the process begins by calling the

schedule_tutor_visits verb. This verb coordinates the scheduling and
sending of tutors to players that have just connected to DollarBay and
limits the number of tutors that are sent at one time in order to avoid
overloading the server. It begins by adding the connecting player to
the list contained in the needs_tutor property of the tutor agent. It
then forks a process to handle the sending of the tutor to the player(s)
in that list. The process looks to see if players are in the needs_tutor
list (at a minimum, the player that just connected should be in the
list). It will continue processing all players in this list until it is
empty. The forked process then looks to see how many tutor
processes are currently running. If less than four tutors are currently
active the process continues, otherwise it returns and lets the four
active tutor processes handle the player who has just connected.

If there are less than three tutors running, the new process begins
by taking a snapshot of the players in the needs_tutor list. The
process then finds the player in the list with the lowest net worth,
operating on the theory that the player who is doing the worst needs

tutoring the most. That player is then removed from the list and the
send_tutor verb is called to dispatch a tutor to that player. Upon
returning from the send_tutor verb, the
number_of_tutor_visits_this_week property of the player is updated
to document that the player has been visited by a tutor this week and
the needs_tutor list is examined to see if any players needing tutoring
remain in the list. If so, the process repeats itself. Otherwise, the
forked process terminates.

The first thing the send_tutor verb does is increment the
active_tutors property of the tutor_agent. It then proceeds to call
update_active_case, eval_active_similarity_and_sort, and
eval_concrete_active_similarity (each described above) to completely
update the player’s case. The player is then examined to see if they
are a perfect match to the best player prototypical case. If it is found
that they are indeed in the "best player" class, the active_tutors
counter is decremented and the verb returns without doing anything.

If the player is not found to be a best player, a message is
constructed for transmission to the player. The message begins with
an introduction from the tutor. Following the introduction from the
tutor, the build_active_message, build_prototype_message, and
build_historical_message verbs are called to generate the
personalized lessons for the player. These customized lessons are
appended to the greeting and sent to the player as a tutor message via
the show_note verb. The show_note verb pops up a new window
containing the tutor message on the player’s screen. The player may
choose to read or ignore the message, and may keep the window open
for reference throughout their playing session. The process
completes by updating the last_tutor_visit property of the player’s
case with the turn and time that the tutor message was sent. It also
decrements the active_tutors property before it completes the process
of sending the tutor to the player.

Building Messages

The build_active_message verb creates a customized tutor lesson
for the player based upon the store that is currently most similar to
the player’s store. It begins by looking at the active_similarity list on
the player case to find the store that is most similar to the player. A
list of similar traits is then grabbed from the player’s
active_tutor_dialog, which was generated during the case update.
The verb then constructs a message of the following nature:

“If I were to pick a store that you are most similar to, it would be

XXX’S which is located in XXX’S_NEIGHBORHOOD. The
things you have most in common with XXX’S are that you both:

- SOME SPECIFIC TRAIT MATCH INFO
- MORE SPECIFIC TRAIT MATCH INFO
- ETC.
Keep in mind that this may be good or bad, depending on how

XXX’S is performing.”

The items shown in bold are replaced with information specific to

the matched player store, and the lesson is returned to the send_tutor
verb where it is appended to the tutor message.

The build_prototype_message verb creates a custom lesson for

the player based upon the prototypical case that they are most similar
to. The lesson is pieced together to look something like this:

“You STRONGLY OR WEAKLY remind me of a player who was

TYPE. In general this means that:
- GENERAL_TYPE_MESSAGE
My advice for you is to:

Regan, Patrick M. and Brian M. Slator (2002). Case-based Tutoring in Virtual Education Environments. ACM Collaborative Virtual Environments 2002

 6

- SPECIFIC_MESSAGE
- ANOTHER_SPECIFIC_MESSAGE
- ETC.”

The types and corresponding general messages are:

1. overcautious - you are not using your cash to expand or keep
your stock level where it should be

2. overspending - you are far too liberal with your money
3. one of the best players - you are doing a great job
4. barking up the wrong tree - your products and service do not

match your advertising, and your price is not appealing to
your target group

5. a foolish squanderer - you are breaking the bank and are not
using ANY sound business practices

Each of these messages is intended to give the player a general sense
of their behavior pattern. The message for each player is based upon
which prototype family they belong to.

The specific messages added to the end of the lesson are
described in Table 1 below. The player will receive eight of these
messages (one for each abstract similarity measure). Each message
provides a detailed explanation on how a player should alter their
behavior to better succeed or an affirmation of good behavior for
each of the abstract similarity properties. The addition of these
specific messages completes the construction of the prototypical tutor
lesson, which is then returned to the send_tutor verb.

Attribute Value Message

product_focus tight - stay focused on the types of
products you are selling... good
job!

 moderate - don't change to any new types
right now

 wide - stick with selling the same types
of products... don't change
between different types

restock_plan understocking - stock more quantity of the
products you sell

 acceptable - keep stocking the same quantity
products you sell... good job!

 overstocking - stock less quantity of the
products you sell

ad_cost low - spend more of your income on
ads

 affordable - keep spending the same amount
of your income on ads... good
job!

 high - spend less of your income on
ads

ad_target fuzzy - use market research to properly
target your ads for the consumers
you need to reach

 okay - use market research to improve
the targeting of your ads and
reach the right consumer groups

 focused - keep targeting your ads to reach
the right consumer groups... good
job!

staff_level underskilled - hire a more skilled employee to
meet the needs of your customers

 appropriate - keep your current employee...
good job!

 overskilled - hire an employee with less skill
and stop wasting your money on
the one you have

cash_reserves low - try to keep more cash on hand

 moderate - keep the same amount of cash
on hand... good job!

 high - try to spend more of your cash to
improve your situation

price_margin low - keep your prices competitive...
good job!

 moderate - improve your prices as they are
only marginally competitive

 high - lower your prices to get
competitive

liability good - keep your liability at an
acceptable level... good job!

 risky - consider reducing your liability

 very risky - reduce your liability as soon as
you can

Table 1 – Specific Prototypical Case Tutor Messages

Historical Messages
The final lesson to be appended to the tutor message is based

upon the history of the player. This lesson is constructed by going
through the player’s library_match_history and examining all of the
prototype case families a player has matched over time. The families
are chronologically ordered, the duration of time spent at each is
calculated, and a lesson of the following format is constructed:

“Going back in time from present to distant past, it seems that you

have been:
- TYPE STRONGLY_OR_WEAKLY for X_NUMBER_OF

weeks
- TYPE STRONGLY_OR_WEAKLY for X_NUMBER_OF

weeks
- ETC.”

where the type correlates to one of those described above. If the
player is currently “one of the best players”, a message stating, “You
are doing a great job! Keep it up” is appended to the end of the
lesson. If the player was previously “one of the best players”, but has
slipped into another prototypical family type, a message stating, “You
were doing a great job! What happened???" is appended to the end
of the lesson.

Evaluation

Two "experiments" were carried out to study the effectiveness
of the tutor. The first was a pilot study to demonstrate the
functionality of the case library and populate it with cases. A group
of senior level computer science students were assigned to play and
comment on the game as part of their classroom activities during the
period of 27-April-2001 to 4-May-2001. Instructions were sent to
each student in the class via email. The students were divided into 5
groups. Each group member was assigned a player, given a specific
behavior pattern to follow in the hopes of mimicking one of the five
prototype cases, and asked to log on several times a day in order to
keep their player focused on the appropriate behavior. In order to
demonstrate the functionality of the case library construction
software component of the case-based tutor, an analysis was
performed on the cases in the case library.

Regan, Patrick M. and Brian M. Slator (2002). Case-based Tutoring in Virtual Education Environments. ACM Collaborative Virtual Environments 2002

 7

The results displayed strong evidence that the prototype
similarity and family algorithms need to be tuned to provide a more
accurate picture of player behavior. It is also likely that additional
prototype cases are needed to fully represent the range of player
behavior. Although the results of the analysis did not clearly show
each player being classified as expected, they have provided valuable
insight about weaknesses in player behavior coverage of the current
case-based tutoring prototypical cases.

The second experiment conducted as a part of this research was

aimed at capturing the effect of tutoring on players participating in a
tournament in DollarBay. After a first tournament with no tutoring,
tutors were activated evenly across the range of student performance
in an attempt to avoid favoring any particular group and a second
tournament was held. Any data that has been used has been
completely stripped of any information that may identify the students
by name in order to protect their identities.

During the second tournament, the tutor was activated for ten of
the eighteen eligible players. These players received a customized
tutor lesson once per turn as they played the second tournament.

While the small sample size and other social factors resulted in
counfounded results, certain measurable effects were seen. For
example, the average number of case library matches for tutored
students was 8.4 versus 8 for untutored students. The average
number of prototype family changes for tutored students was 1.4
versus 0.5 for untutored students. Both measures show an increase in
student behavior changes for the tutored students, and it is
encouraging to see tutored students showing signs of behavior
changes over untutored students.

Conclusion

As virtual educational environments grow in popularity, students
will have more opportunities to learn subjects at their own pace.
However, one of the challenges of teaching via virtual educational
environments is the customization of individualized lessons for each
student. One approach to providing this critical feedback is the case-
based tutoring implemented in DollarBay.

One of the current weaknesses of the system is that a better set
of prototype cases is needed to more accurately model player
behavior. With the case library that has been generated to date,
future research may be able to use data mining to determine exactly
what prototypical cases need to be implemented to improve this
situation. Upon successfully incorporating new prototypical cases to
the system, the tutor would then be able to provide more specific and
accurate advice to players matching each prototypical case.

References

[Bouzeghoub 97] Bouzeghoub, Mokrane, George Gardarin, and
Patrick Vaduriez, “Object Technology: Concepts and Methods”,
International Thompson Computer Press, Boston, MA, 1997.

[Comer 99] Comer, Douglas E., “Computer Networks and
Internets”, Chapter 23, Prentice Hall, Upper Saddle River, NJ, 1999.

[Curtis 97] Curtis, Pavel. “LambdaMOO Programmer’s
Manual for LambdaMOO Version 1.8.0p6”, Xerox, San Francisco,
CA, March 1997.

[Headington 97] Headington, Mark R. and David D. Riley, “Data
Abstraction and Structures Using C++”, Chapter 10, Jones and
Bartlett, Sudbury, MA, 1997.

[Kolodner &Leake 96] Kolodner, J. L. and Leake, D. B.,
“Case-based Reasoning: Experiences, Lessons, and Future
Directions”, Chapter 2, AAAI Press/MIT Press, Menlo Park, CA.

[Leake 96] Leake, David B., “Case-based Reasoning:
Experiences, Lessons, and Future Directions”, Chapter 1, AAAI
Press/MIT Press, Menlo Park, CA, 1996.

[Luger 98] Luger, G. F., and W. A. Stubblefield, “Artificial
Intelligence – Structures and Strategies for Complex Problem
Solving”, Ch. 6, Addison Wesley Longman, Reading, MA, 1998.

[Palmer 02] Palmer, E., NASA Ames, “Case-based Intelligent
Tutoring for Pilots”, http://human-factors.arc.nasa.gov/projects/ihi/
casebased.html

[Schwert, Slator, Saini-Eidukat 99] Schwert, D.P., B.M. Slator,
B. Saini-Eidukat, (1999). “A Virtual World for Earth Science
Education in Secondary and Post-Secondary Environments: The
Geology Explorer”, Proc. Int. Conf. on Mathematics/Science
Education &Technology, March 1-4, San Antonio, TX, pp. 519-525.

[Slator, Brian M. 99] Slator, Brian M., “Intelligent Tutors in
Virtual Worlds”, 8th Annual Conference on Intelligent Systems
(ICIS-99), Denver, CO, June 24-26, 1999.

[Slator & Farooque 98] Slator, Brian M. and Golam Farooque,
“The Agents in an Agent-based Economic Simulation Model”, Proc.
11th Int. Conf. on Computer Applications in Industry and
Engineering (CAINE-98), Las Vegas, NV, November 11-13, 1998.

[Slator 99] Slator, Brian M. et al., “Research and
Development of Virtual Worlds for Immersive Instruction”,
Proceedings of the Small College Computing Symposium (SCCS99),
La Crosse, WI, April 15-17, 1999.

[Slator et al. 99] Slator, B. M., P. Juell, P.E. McClean, B. Saini-
Eidukat, D.P. Schwert, A.R. White, and C. Hill, “Virtual
Environments for Education at NDSU”, ED-MEDIA99, Seattle, WA,
June 19-24, 1999.

[Slator et al. 01] Slator, Brian M. with the members of CsCI345
(2001). “Rushing Headlong into the Past: the Blackwood
Simulation”, Proc. of the 5th IASTED Int. Conf. on Internet and
Multimedia Systems and Applications (IMSA 2001), Honolulu, HI,
August 13-16, pp. 318-323. Complete author list at
http://lions.cs.ndsu.nodak.edu/~mooadmin/papers/imsa-final.htm

[Stansifer 95] Stansifer, Ryan, “The Study of Programming
Languages”, Prentice-Hall, Englewood Cliffs, NJ, 1995.

[White, McClean, Slator 99]. White, Alan R., Phillip E. McClean,
and Brian M. Slator (1999). The Virtual Cell: An Interactive, Virtual
Environment for Cell Biology. ED-MEDIA 99, June 19-24, Seattle,
WA, pp. 1444-1445.

[Zelenak 99] Zelenak, Jozef. “Conversation Construction for
Agents in Educational Simulation Environments”, Master’s Thesis,
Computer Science Department, North Dakota State University,
Fargo, ND, 1999.

