
The Agents in an Agent-based Economic Simulation Model

Brian M. Slator and Golam Farooque
Computer Science Department
North Dakota State University

Fargo, ND 58105

Abstract
 The NDSU Retailing game is an interactive multi-media,
multi-player, educational, and simulation-based economic
game implemented in LambdaMoo, which is an object-
oriented multi-user Domain (MUD). The primary simulation
methodology of the Retailing game is agent-based modeling.
Agent-based modeling involves specifying how individual
agents (such as people, nations, or organizations) interact with
each other and with their environment. Computer simulation is
then used to discover the emergent properties of the model,
and thereby gain insights into dynamic processes. This Agent-
based approach is capable of revealing consequences through
simulation that cannot be deduced with standard mathematical
techniques [1]. Like induction, the main method of finding
these consequences (and perhaps new insights) is through
analysis of a set of data - in this case data generated by running
the computer simulation. The goal, in these cases, is to
discover new principles about the dynamics of complex
systems, especially complex adaptive systems, which are
typical of social processes. The over-arching goal of the
Retailing Game is to construct a plausible economic simulation
in order to create an authentic learn-by-doing environment for
microeconomics education.

Key Words: Agent-Based Systems, Computers in Education,

Intelligent Systems, Multimedia Applications

Introduction
 Economic models are typically built on the idea of
demand and supply functions where economic entities
maximize their welfare when the market achieves equilibrium.
These models, however, often either ignore how these entities
evaluate information, form expectations, evolve strategies, and
execute their plans: and ignore the role of learning in decision
making. Models in neoclassical economics are traditionally
based on aggregation of behavior or use a representative entity.
The mainstream Walrasian tradition usually focuses on entities
that are perfectly rational and maximize expected utility.

 Agent-based economics models, on the other hand,
promises to model rational agents as heterogeneous individuals
with divergent theories. They allow us to relax assumptions
about perfect rationality, rational expectations, and perceptual
maximization of expected utility. To date agent-based models
have been used in the social sciences to explore patterns of
spatial segregation, the evolution of cooperation, the
emergence of money, cultural evolution, market processes,
electoral politics, state formation, and group stability.

 In this paper, we describe the NDSU Retailing game in
contrast with other agent-based models, concentrating on the

role of the Customer agents in implementing the simulation.
The goal of the Retailing Game is to teach a wide set of skills
associated with running a retail business by allowing the
microeconomics' student to run a simulated store in a
simulated economy [2]. The NDSU Retailing game is a multi-
user, educational, economic game implemented in
LambdaMoo, which is an object-oriented Multi-user Domain
(MUD).

 The objective of this paper is to examine the NDSU
Retailing game, implemented in the mythical synthetic
environment called Dollar Bay, in the context of an agent-
based economic simulation model. There are three types of
software agents in the Retailing Game
1) atmosphere agents, lending local color, and a measure of

authenticity, to the environment. These agents are largely
designed for their entertainment value. In Dollar Bay these
include a Fire Inspector, a Juggler, a Beat Cop, and so forth

2) infrastructure agents, contributing in a meaningful way to
the "play" of the game. These agents are essential to the
pedagogical goals of the educational environment. In Dollar
Bay these include the Customers that effect economic
demand, and, to a lesser extent, the Employees that control
the day-to-day workings of each synthetic retail
establishment, and the agents who supply wholesale goods,
direct advertising services, and so forth.

3) intelligent tutoring agents that monitor, mentor, and
remediate the human learners in the performance of their
roles. The tutoring agents are being developed as sub-topic
experts who have access to problem solving experiences,
context sensitive help and advice, conceptual and procedural
tutorials, stories of success and failure within their particular
sub-topic, and conversational networks for learner
interaction.

 Although the literature on agent-based models has been
increasing very rapidly, there are very limited numbers of
studies on agent-based economic simulation models [3,4,5].
[3] implements two case studies on agent-based economic
models using Swarm. Swarm is a collection of software
libraries, written in Objective-C. [4] develops an evolutionary
trade network game (TNG) that combines evolutionary game
play with endogenous partner selection. The TNG is
implemented in C++. [5] builds an economic society of agents
in which buyers and sellers compete with each other and try to
increase their total values and total profits, respectively.

 The agent-based economic models are different from one
another in a variety of ways. To some extent, the Retailing
game possesses some characteristics of other existing agent-
based economic models, in particular the Swarm model. The
players of the Retailing game are classes of consumers and
firms. The Retailing game's players are allowed to compete
with each other openly. They set a competitive price, hire the
appropriate staff, and sell appealing products. The players
advertise in a cost efficient way in order to reach the most
customers. The two agent-based economics case studies
implemented in Swarm also assumes that the economic agents

are the firms, consumers, and labors. Swarm assumes an
oligopolistic competition with differentiated products, the
consumers have a preferred product, and each firm produces
and sells only one product.

Playing the Retailing Game
 The players in the Retailing game are assigned a location,
and they must decide what to sell, how much to stock, who to
buy from, and what price to set. The players also decide the
level of services they offer. The decisions of all players are
sent to a main server. The task of the server is to compute each
Customer agent's shopping strategy based on all players
decisions and the interests, wants, and location of consumers
in Dollar Bay. The Retailing game provides the players the
financial tools to calculate their inventory, assets, liability,
expenditures, and profits. The players are also able to research
their competitors' prices, inventories, and staffing decisions
(but not profits or other presumably "secret" information).
Further, each player has access to local newspapers, radio, and
a wholesale directory to get general information about Dollar
Bay's business environment, other competitors' advertisements,
and to contact suppliers. By contrast, the economic models
implemented in Swarm assume that the firm chooses to
produce a product at a particular location, but may choose to
change to a different location. Like the Retailing game, the
economic agents in Swarm make self-interested decisions
based on available information in the environment.

 The Retailing game consists of interface objects including
a map of Dollar Bay, representation of population and
products, product class definitions, and product models. The
Retailing game divides the Dollar Bay into neighborhoods and
models the entire population of Dollar Bay into 20 distinct
psychographic groups based on age, income, life narrative,
interests, values, and lifestyles. Unlike the Retailing game, the
Swarm economic models can be implemented at any place, and
there is no clustering of customers. Swarm's constructed
classes are: ConsumerClass, FirmsClass, OfferSpace (which
represents all offer and sales data in the product space),
MarketSpace (which records all actual transactions between
buyers and sellers), and Creator (control exit and entry). Player
creation of such classes are absent in the Retailing game.

 The Retailing game uses product classes and models as its
level of representation. A model represents a particular good
for sale, and a product class is used to describe the market for
an entire class of goods. All models in the same product class
compete with each other while no models in different product
classes compete. In Swarm, some product classes compete
with each other.

 In the Retailing game, a product class contains all
information on each consumer's attraction for a particular
product. The representation of any particular product is
composed of average potential demand (APD), a percentage
number for each cluster group's relative level of interest
compared to the overall all potential demand (PD), a dollar
amount for unit search cost (USC) for each cluster group, a

unit transportation cost for each cluster group, unit service
benefit (USB) and unit quality benefit (UQB) the cluster group
receives from the store and/or product, all possible features of
the product, price sensitivity (PS) of cluster groups, and a
maximum dollar amount (MAX) and a minimum dollar
amount (MIN). Based on the information stored in the product
class representation, the Customer agents decide the amount of
a particular product, at what price, from which stores they
would buy. The individual purchasing decisions of these
agents implement the economic activity of Dollar Bay.

 The city of Dollar Bay is simulated by building a
graphical user-interface onto a MOO (MUD, Object-Oriented,
where MUD stands for Multi-User Domain or Dungeon). The
basic components are "rooms" with "exits", "containers" and
"agents" or "players". MUDs support the object management
and inter-agent messaging that is required for multi-agent
games and at the same time provides a programming language
for writing simulation and customizing the MUD.

Infrastructure Agents in the Retailing Game
 In this approach to simulating an economic environment,
it is important to represent continuous demand for products.
This is simulated by implementing the notion of a "virtual
week" where customer agents are given a shopping list
representing a week's worth of demand. Therefore, a "week" is
defined as the amount of time it takes for all customer agents
to exhaust their shopping lists. At the end of each week, new
shopping lists are created and, more important to the players,
new "attractiveness" lists are compiled. Then the customer
agents are reset, and a new virtual week is begun. As a result,
to understand the economic simulation, it is important to
understand what happens in the "weekend calculation" which
occurs at the end of each virtual week.

Algorithm: The "Weekend" Calculation
 The purpose of the weekend calculation is to charge
players for their weekly expenses and recalculate the customer
agent "motivations". This calculation, which takes only a few
minutes to execute, is composed of the following steps:

1) A batchmode switch is set, which effectively shuts down the

many various software agents who run during the course of
a virtual week; the turn counter is updated; and the season
variable is updated, as necessary. If it is the first "week" of a
new season (or new product types have been added to the
simulation), then the Customer agents re-initialize their
maximum product type demand values

Algorithm: Maximum Product Type Demand
 Maximum demand for each product type (there are

currently 46 product types defined) is calculated for each
customer agent (psychographic representative) on a yearly
basis. This is calculation is based on
a) cluster group population in a neighborhood
b) cluster group "interest" in a product (APD)
c) neighborhood and product features that affect demand,

and

d) a "fixed" demand multiplier intended to reflect average
national demand for the product type (a figure taken
from national sales revenue data).

The figure calculated for each product type (i.e. hardware
for pets) indicates how many units of each type will be
purchased by the cluster group in one year. This figure is
divided by 52 to return a weekly demand figure.

The weekly demand figure on each customer agent is later
copied and used as their "shopping list". Items are
removed from the list as they are purchased (or
abandoned) by the customer agent.

2) The Discount Warehouse does its weekly activities:
ordering and advertising (which varies by virtual "season").

3) Weekly accounting and debiting is processed for player's
Leases, Staffing, Liabilities (i.e. loans), Advertising, and
Purchases.

Algorithm: Weekly accounting and debiting
a) Lease charges are assessed on each store for a week's rent.

Leases are automatically and semi-randomly arranged
when players first enter the game. Player's are only
allowed a single location. If the store has insufficient
funds to pay rent, an eviction function is invoked, and the
player goes into virtual receivership.

b) Staffing charges are assessed on each store for a week's
wages. Staff is acquired with a hiring interface. If there
are insufficient funds, the store's staffing is reduced by
one level. However, store staffing can never be reduced to
zero, as this would prevent all future sales, which depend
on employee agents.

c) Liabilities charges are assessed on each store for the
weekly loan repayment amount. Loans are arranged
through interactions with the banker agent.

d) Advertising charges are assessed on each store.
Advertising is purchased on a continuing basis with the
advertising interface. If a player cannot afford to pay, their
continuing ad is deleted. Note: it is also possible to order
"leaflet style" advertising through visiting the Quicky Ad
agent, but these are one-time advertising expenses that are
immediately billed (and cannot be purchased without
sufficient funds).

e) Weekly product ordering is calculated. If the player has
insufficient funds, the player gets no new merchandise.

4) Customer agent motivations are determined for the coming
week based on both fixed and dynamic factors.

Algorithm: Customer Agent Motivations
a) Fixed attractiveness factors are calculated for each

company: public image (a value calculated on successful
versus unsuccessful customer agent "visits" to the store),
and longevity benefit (0.1 "points" added for every week
in business, up to a maximum of 20 points)

b) The "attractiveness" of each store, to each customer agent
(representing a psychographic group), is calculated for
every neighborhood. This is another complex formula
involving longevity, public image, advertising "benefit",
and travel cost.
The formula for calculating a store's attractiveness is

attractiveness = SV + abs(SV) * longevity / 100;
where SV = ad benefit - transportation costs + public

image
ad benefit = the combined effect of each ad's media,

tone, size and feature effects
transportation cost = 2 * distance * travel constant

The result is a list of {store, score} pairs, sorted and stored
on each customer agent. This list is used by customer
agents to choose which stores they will visit first.

5) The customer agents are reset and their "maximum
demands" (which are periodically recalculated using the
function described above) are copied over into their
shopping list

6) The batchmode switch is cleared, indicating the weekend
calculations are at an end.

Process Control in the Economic Simulation
 It is interesting to note that process flow in the Retailing
Game's economic simulation is strictly agent-based. There is
no infinite loop anywhere in the simulation, rather, there is an
infinite sequence of forking processes.
 In LambdaMOO, as in many operating environments,
there is a control structure named 'fork()' which has the effect
of spawning a new process and returning control to the calling
environment. Thus, a forking routine will launch a process that
runs in parallel with itself. In the Retailing Game, two major
events occur: 1) one of the last steps in the "weekend"
calculations is to fork() the dispatching sequence of the
customer agents, and 2) one of the final steps of the last
customer agent (there are currently 49 customer agents in the
simulation) is to fork() a call that invokes the weekend
calculations. In this way, the fork() operation provides a
straightforward way to maintain a continuous simulation.

Customer Agent Behavior
 The customer agents in the economic simulation are what
drive the action. The simulation randomly chooses customer
agents, and the customer agents randomly choose one item
from their shopping lists. This product becomes the object of
their search. The customer agents first scan their list of
"attractive" stores in order, looking for one that sells products
of the type needed. Then the customer agents visit these
candidate stores in turn, attempting to buy the item.
 It is interesting to note that customer agents visit stores
without knowing in advance that the store actually carries the
product they seek. This is because stores advertise and are
cataloged according to their product lines, e.g.. hardware or
pets, but customer agents are searching for specific products,
e.g.. rock saws or fish. When a customer agent visits a store,
they know they want a product, but not specifically which
model, and they know the player carries that product line in
their store, but not which particular products, and without
advance knowledge of whether the store has the items on hand
or is sold out.
 This approach has two obvious benefits. First, the
simulation is plausible in that customer agents must search for
products, operate without perfect knowledge, and can quite
easily go home empty handed. Second, players are permitted to

improvise and adapt in that if a succession of customer agents
visits in search of fish, and the player sells no fish, they can
quickly order some to take advantage of the perceived demand.
This footwork on the part of the player is imperceptible to the
customer agents who are merely searching for products, so
when a player suddenly orders fish, the customer agents are
perfectly willing to buy them, even though the player only
acquired them moments before.

Algorithm: Shopping
 The customer agents are dispatched randomly.
1) The dispatch function simply calls the shop function, except

for about 1% of the time, when it randomly calls a return
product function

2) The shop function chooses the next item to shop for, by
randomly selecting a product from the shopping list then

3) The customer agent chooses the "best" store to shop in, by
cycling down the sorted "attractiveness" list of stores
searching for the next one that has the chosen product type
in it's catalog, then

4) The customer agent physically moves to the store, and
attempts to shop there

5) The shopping attempt function implements an agent-to-
agent interaction between the customer agent and the store's
employee. This interaction can culminate in one of several
possible outcomes
a) The customer agent first checks if there is an employee on

duty. If not, the customer agent consults its own "larceny
index" and decides whether to simply steal something
from the store. This only happens rarely.

b) Assuming shoplifting is rejected, the customer agent will
simply leave the store if there is no employee present

c) If an employee is present, the customer agent will first
check if the employee is busy. If busy, the customer agent
will again briefly consider larceny, but rarely will attempt
it
i) If the customer agent attempts shoplifting while the

employee is present, there is a chance the employee will
detect the theft. If so, the customer agent might be
ejected (depending on individual employee
characteristics) and a report might be made to the police
(the Beat Cop, mentioned above)

ii) In the usual case, the customer agent will wait for a
busy employee from some period, depending on factors
that include the customer agent's errand factor and
impatience index.

iii) If the employee is not busy, or the customer agent's
patience is rewarded, the customer agent will request a
product from the employee. From this point on, the
customer agent/employee interaction is played out

d) When the customer agent requests a product, the
employee agent scans the store's inventory, looking for
specific models of that product type. The employee will
then typically present the models, in descending order by
price, for the customer agent to consider.

e) The customer agents consider purchases as follows:
i) First, the customer agent calculates whether they can

afford the proffered model, by referencing its own

psychographic group as defined on the object for that
product line. On this basis the customer agent
determines whether the price of the model is too
expensive, or in its range.

ii) Then the customer agent calculates whether to buy the
model or not. This decision is calculated as a linearly
increasing likelihood, also based on the minimum and
maximum affordability values. The probability of the
customer agent purchasing the model is calculated by
prob = 100 * (max - price) / (max - min)

however, the decision to buy is still randomized by
yes if random(100) < prob, otherwise no, which

simply says that the closer you are to the minimum
affordability, the more likely you are to buy
because minimum affordability is the price at which
everyone (in the particular psychographic group)
can afford the purchase.

iii) Finally, however the customer agent/employee
interaction proceeds, there is a random chance the
customer agent will attempt to play the store's fortune
machine, if one exists.

f) If the item is successfully purchased, the customer agent
removes the item from its shopping list and returns home.
If the item is not found in the first store, the customer
agent makes several attempts then abandons the search,
removing the item from its shopping list and returning
home.

g) As described above, when the last customer agent has
exhausted their shopping list, the week is ended, which
invokes the "weekend" calculation and the process starts
all over again.

Conclusion
 This paper presents an agent-based economic simulation
implemented in LambdaMoo. The object-oriented simulation
method offers many possibilities for extending and
manipulating the existing economic model. The Agent-based
approach promises to model rational agents as heterogeneous
individuals with divergent theories. They allow us to relax
assumptions about perfect rationality, rational expectations,
and perceptual maximization of expected utility.

References
[1] Axelrod, Robert (Winter 1996), "Education and Training"-

a course offered at the University of Michigan.
[2] Hooker, B. and B. Slator, B (1996) A Model of Consumer

Decision Making for a Mud-based Game. ITS'96 Workshop
on Simulation-Based Learning Technology. Montreal, June.

[3] Stefanson, Benedikt (1997), Swarm: An Object Oriented
Simulation Platform: Applied to Markets and Organizations
in Angeline, Reynolds, McDonnell, Eberhart, (eds),
Evolutionary Programming VI, Lecture Notes in Computer
Science, Vol. 1213, Springer-Verlag, New York.

[4] Tesfatsion, Leigh (1996), A Trade Network Game With
Endogenous Partner Selection. Proceedings of the Fifth
Annual Conference on Evolutionary Programming, June.

[5] Vidal, James M. and Edmund H. Durfee, (1996), "Building
Agent Models in Economics Societies of Agents." http:
//ai.eecs.umich.edu/people/jmvidal/papers/amw/amw.html

